

Integrating omic data to detect association between sHSP transcripts and

phenotypic variability in tomato fruits

Cacchiarelli Paolo¹, Spetale Flavio², Tapia Elizabeth² y Pratta Guillermo¹

¹Instituto de Investigaciones en Ciencias Agrarias de Rosario - CONICET/UNR. Argentina

² Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas - CONICET/UNR. Argentina

cacchiarelli@iicar-conicet.gob.ar

MATERIALS AND METHODS
A Generalized Procrustean Analysis (GPA) was performed on the gene
expression levels of two clusters of sHSP located on chromosomes 6
and 9, using transcriptomic data, along with 11 quantitative fruit
traits as phenomic data. Traits in this experiment were: Soluble solids
(SS), pH, titratable acidity (TA), colour coefficient A/B, reflectance
percentage (L), firmness, diameter, height, shape, weight, and
shelf-life (Figure 2). An estimation of the degrees of dominance (d/a)
was carried out for values of gene expression in sHSP in chr06 and
chr09. Thus, the objective of this communication was to evaluate the
association between transcriptome and phenotypic datasets.

RESULTS

explained 77.4% and 22.6% of the total variability, respectively. In the biplot, the consensus positions of P and CxP were close at positive values of PC1, while C was located at negative values. Contrarily, P and CxP were discriminated against by PC2 because the exotic parent was on its negative values and the hybrid on the positive ones. C was located at 0 value (Figure 1). Nevertheless, for each genotype positions according to transcriptomic and phenomic characterizations were similar, indicating a high association among both datasets. A gene action analysis was carried out and d/a coefficient for all traits evidenced a high dominance of the wild genome, which agreed to the proximity of P and CxP in the biplot. In all cases, the F₁ value was towards the wild parent. Solyc06g076520 on chromosome 6 and Solyc09g015000 on chromosome 9 showed positive overdominance and the rest of the genes

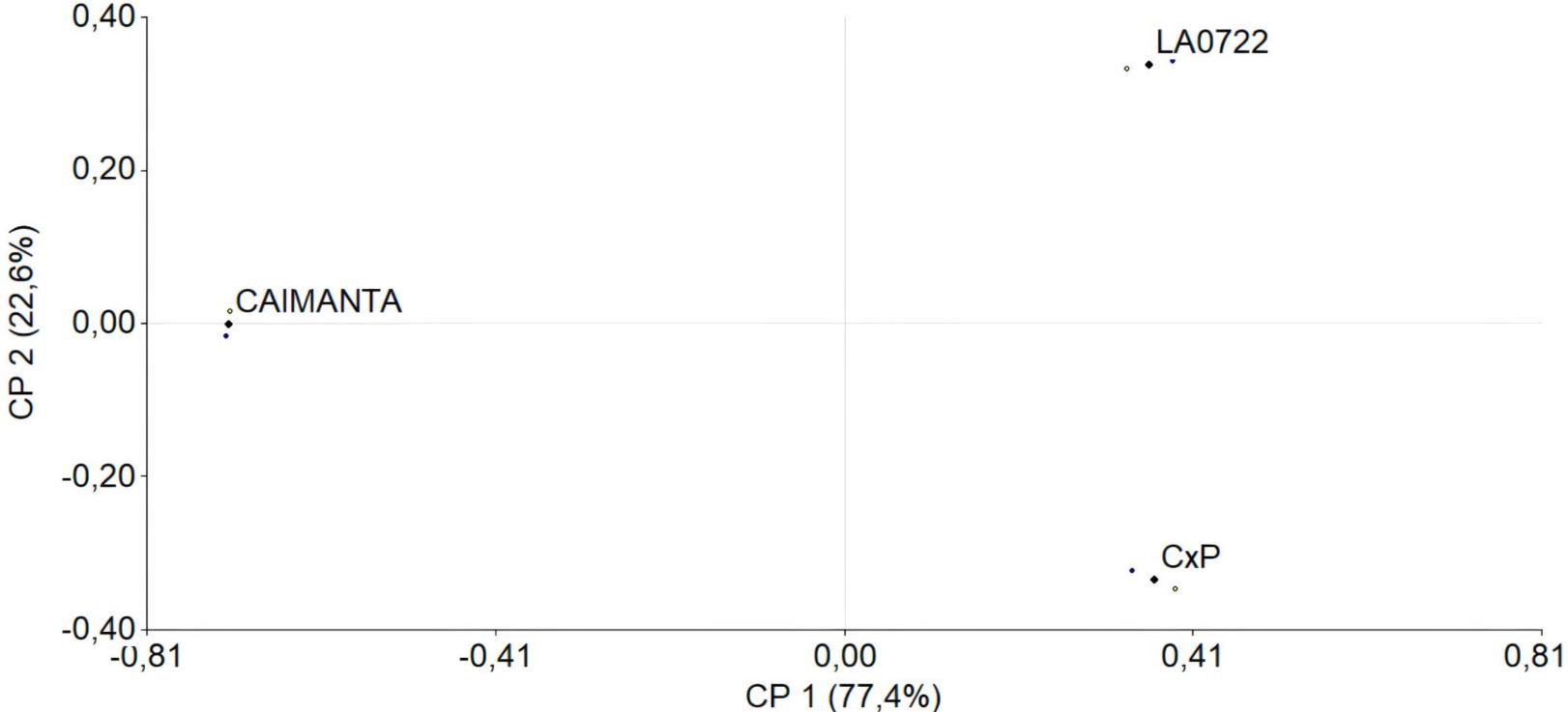
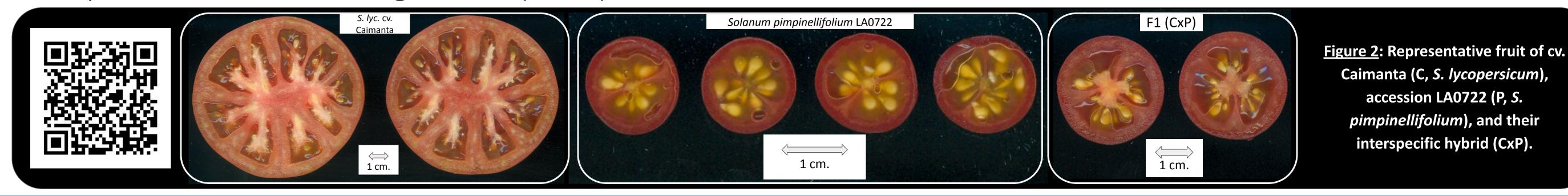



Figure 1: Generalised Procrustes Analysis in C, P and F, CxP. Central dot represents the genotype, with the grey dot representing the sHSPs found on chromosome 06 and the other dot corresponding to the sHSPs found on chromosome 09.

Gene ID	С	Р	F ₁ CxP	РО	а	-а	d	d/a	Dominance degree	Dominant
Solyc06g076520.1	10,841	12,190	12,265	11,52	0,674	-0,674	0,750	1,112	Positive overdominance	LA0722
Solyc06g076540.1	7,147	12,572	11,984	9 <i>,</i> 86	2,713	-2,713	2,124	0,783	Partial dominance to highest values	LA0722
Solyc06g076560.2	10,088	12,633	11,795	11,36	1,272	-1,272	0,435	0,342	Partial dominance to highest values	LA0722
Solyc06g076570.3	10,383	12,077	11,785	11,23	0,847	-0,847	0,554	0,655	Partial dominance to highest values	LA0722
Solyc09g015000.3	9,039	10,949	11,201	9 <i>,</i> 99	0,955	-0,955	1,207	1,264	Positive overdominance	LA0722
Solyc09g015020.1	8,640	10,292	10,130	9,47	0,826	-0,826	0,664	0,804	Partial dominance to highest values	LA0722

showed partial dominance towards higher values (table 1).

Table 1: Estimation of dominance in sHSPs genes on chromosomes 06 and 09.

O

CONCLUSIONS

This information can be applied in breeding programs to get optimal use of exotic genes obtaining new varieties with adequate fruit quality traits.

ACKNOWLEDGMENTS	REFERENCES
We would like to express our sincere gratitude to our team GMT-IICAR (<u>Tomato Breeding</u> <u>Group</u> - IICAR) and the CIFASIS team for their valuable guidance and support throughout the experimental process. Their experience and expertise has been invaluable in shaping our research and helping us overcome the challenges of data analysis and wet lab experiments.	Arce D.P., Krsticevic F.J., Bertolaccini M.R., Ezpeleta J., Ponce S.D., Tapia E. (2015). Analysis of Small Heat Shock Protein Gene Family Expression (RNA-Seq) during the Tomato Fruit Maturation. In: Braidot A, Hadad A, eds. VI Latin American Congress on Biomedical Engineering CLAIB, Paraná, Argentina 29, 30 & 31 October 2014, Cham: Springer International Publishing, pp. 679-682. Arce, D.P.; Krsticevic, F.J., Ezpeleta, J.; Ponce, S.D.; Pratta, G.R.; Tapia E (2016). Heterogeneous expression pattern of tandem duplicated sHsps genes during fruit ripening in two tomato species. Journal of Physics: Conference Series 705. 012004 doi:10.1088/1742-6596/705/1/012004 Pratta, G.R.; Rodriguez, G.R.; Zorzoli, R.; Valle, E.M. and Picardi, L.A. (2011). Phenotypic and molecular characterization of selected tomato recombinant inbred lines derived from a cross Solanum lycopersicum x S. pimpinellifolium. Journal of Genetics 90: 229-237