
A B

C D

NEW SET OF CLASSES FOR FRUIT SHAPE CLASSIFICATION IN 
TOMATO BASED ON MACHINE LEARNING 
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To develop a machine-learning model for automated
tomato shape classification and establish a “gold
standard”

Figure 1: Representative longitudinal-section fruit images
from Rodríguez et al. (2011b). Each fruit is identified by the 
name of the accesion and the presence of mutation in the 
main shape genes. Scale: 1cm

Longitudinal-section cultivar images
(Figure 1) corresponding to 368
tomato accessions were downloaded
from https://solgenomics.net and
split into individual fruit images
(n=1124). The images were evaluated
using the Tomato Analyzer 3.0
program to assess fruit morphological
traits, resulting in a total of 41 traits.
The images were visually categorized
into different morphological classes
based on four available systems:
UPOV, IPGRI, “Rodriguez2011,” and
“Visa2014” (Figure 2). Additionally, a
new set of classes was introduced,
where the rectangular class from the
Rodriguez2011 method was merged
with the ellipsoid class, creating a
new class called "newclass," resulting
in a total of five datasets

The numeric variables were normalized using a z-score approach, and highly correlated 
variables (above 0.95) were removed. The data was split into 80% for training and 20% 
for testing. We applied Recursive Feature Elimination (RFE) as a feature selection 
technique using the Support Vector Machine model.
The supervised classification methods employed included multinomial logistic
regression (MLR), random forest (RF), and support vector machine (SVM). A five-fold
cross-validation was performed, considering different data sets for training and testing.
Quality metrics for the various models and classifications were assessed. Significant
differences between methods and models were evaluated after cross-validation using
the Kruskal-Wallis test, and the mean differences between pairs of samples were
compared with the Wilcoxon-Mann-Whitney (WMW) test.

A new classification system for fruit shapes,
including seven categories (flat, round, ellipsoid,
heart, oxheart, obovoid, and long), has significantly
improved accuracy, achieving an 85% success rate.
This "gold standard" for fruit shape facilitates
precise tomato cultivar description and consensus
among researchers, aiding genetic understanding.

WMW test showed that mean accuracy for UPOV and IPGRI was not
significantly different and exhibited the lowest values, Rodriguez2011 and Visa2014
showed no significant differences for accuracy and intermediate values, and the
novel set of classes yielded the highest mean accuracy values across all four
models, i.e., 85% (Frigure 3, Table 1)

The mean accuracy values in our study ranged from 0.69 to 0.85, while the
standard deviation (SD) values varied between 0.01 and 0.03 (Table 1). The lowest
accuracy value was observed in the case of the MLR model applied to the UPOV
dataset, while the highest mean accuracy was achieved by the SVM model with the
new set of classes. When considering the different datasets, we did not detect
significant differences in mean accuracy across the models (Figure 3A, Table 1) at a
5% significance level. However, substantial differences were observed among the
datasets (p < 0.01) for all models.

Multinomial Logistic 
Regresion

Support Vector 
Machine

Random Forest

mean ± sd mean ± sd mean ± sd pvalue(F)
Rodriguez2011 0.78 ± 0.03 0.80 ± 0.03 0.79 ± 0.02 0.23
Visa2014 0.79 ± 0.03 0.79 ± 0.02 0.79 ± 0.02 0.76
UPOV 0.69 ± 0.03 0.72 ± 0.02 0.70 ± 0.02 0.37
IPGRI 0.72 ± 0.02 0.72 ± 0.02 0.73 ± 0.02 0.65
newclas 0.83 ± 0.02 0.85 ± 0.01 0.85 ± 0.01 0.22
pvalue(F) <0.001 <0.001 <0.001

Table 1: Mean and standard desviation (sd) for accuracy values of differents machine learning models.

pvalue(F): significance level according to Kruskal-Wallis test

Figure 3: Comparison of 
Approaches A) Dot plot of 
accuracy values for 
different datasets across all 
machine learning models. 
B-D) Box plot of accuracy 
values for different models 
across the datasets. 
Asterisks indicate 
significant differences 
between the datasets 
according to the WMW 
test. ** p < 0.01, * p < 0.05, 
ns: p > 0.05
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Four highly correlated (>0.95) variables were removed. By RFE method 12 
variables that were common across all methods were kept.

Figure 2 Representative 
scheme of fruit shape 
classes on longitudinal 
section for the different 
systems available

Tomato (Solanum lycopersicum L.) is the second most consumed global vegetable. Fruit shape significantly impacts on yield, quality, consumer preference, and commercial usage.

Despite of the digital advancements in precision agriculture, the determination of fruit shape still relies predominantly on visual assessment, and there are no standardized approaches.

Classification criteria often vary among experts, and exist four for tomato: "Rodriguez2011," "Visa2014," "UPOV," and "IPGRI". They define eight, nine, ten, and eight classes, respectively. 
Unfortunately, these classifications do not present consensus which limits the genetic understanding of shape determinants.

https://solgenomics.net/

