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In Chile and worldwide, lung cancer is one of the leading causes of death; therefore, research in this field is of vital § S
importance. Microbiome research in lung cancer has revealed that the tumor microenvironment harbors a distinct | ——— - Dt el
microbial community. Within the tumor microenvironment, the microbiota are thought to exert influence on tumor iy qu a Diversity, taxonomy, "’Bz PICRUSt2
development and progression. The intricate interplay between the tumor microbiome and the immune system adds L Fastq differential abundance, @
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complexity to our understanding of cancer, as these two factors interact and influence one another in ways that are still
being unraveled. The tumor microbiome’s role in cancer has underscored its capacity to influence and modulate
immune surveillance, although the functional mechanisms remain elusive.
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Results and discussion
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Figure 1. Alpha diversity analysis using Shannon index and Wilcoxon rank S e tary tanars ke protein containing a GARD ﬁ
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adenocarcinoma and non-tumor adjacent tissue. B Comparison between Log2 FC (LUAD vs NAT)
formalin-fixed paraffin-embbeded simples from adenocarcinoma
differentiated and undifferentiated.
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Figure 3. Proteomics analysis for Adenocarcinoma and non-tumor adjacent tissue of fresh frozen samples. A Table of protein counts in each analysis. B Volcano plot of fold change and pvalue (FC > 1.5, padjusted <
0.05) for all proteins. C Heatmap of intensity values of immune-related proteins. D Boxplot of intensity values from up and downregulated host proteins (Wilcoxon rank sum test, pval < 0.05). E Gene ontology
molecular functions enrichment analysis of immune-related set of proteins up and downregulated in Adenocarcinoma.
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Figure 2. Differential abundance analysis using LDA score from LEfSe. A I Membrane
Comparison between fresh-frozen samples for adenocarcinoma and % =
non-tumor adjacent tissue. B Comparison between formalin-fixed ©
paraffin-embbeded simples from adenocarcinoma differentiated and Figure 4. Metaproteomics and metabolomics analysis for Adenocarcinoma and non- tumor adjacent tissue of fresh frozen samples. A Heatmap of microbial-related peptides and the last common ancestor
undifferentiated. identified. B Heatmap of peptide set enrichment for Gene ontology analysis. C Heatmap of microbial-associated metabolites intensities. D Metabolite Sets Enrichment Overview in Adenocarcinoma.
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